EBim D!{%N

Robot Competitions Kick Innovation

in Cognitive Systems and Robotics
FP7-1CT-601012

Funded by the European Union

General evaluation criteria, modules and metrics for
benchmarking through competitions

Deliverable: D-1.2

Due Date: June 30, 2014

Latest Update: July 10, 2014

Revision: 1.0

Editors: Francesco Amigoni, Andrea Bonarini, Giulio Fontana, Matteo
Matteucci, Viola Schiaffonati.

Contributors: Aamir Ahmad, Iman Awaad, Francesco Amigoni, Jakob Berghofer,

Rainer Bischoff, Andrea Bonarini, Roberto Capobianco, Rhama
Dwiputra, Giulio Fontana, Frederik Hegger, Nico Hochgeschwender,
Luca Tocchi, Gerhard Kraetzschmar, Pedro Lima, Matteo Matteucci,
Daniele Nardi, Viola Schiaffionati, Sven Schneider.

TECNICO
LISBOA
qo&‘"%x POLITECNICO

KUKA (35p)) o1 miLaNo INNOCENTIVE"

SAP]ENZA o ‘ Hochschule

UNIVERSITA DI ROMA Bonn-Rhein-Sieg

Contents

(1 Benchmarking Through Competitions| 5
(1.1 Robot competitions as benchmarking tools| 5
(1.2 Difficulties, limitations, and perspectives| 6
(1.3 The RoCKIn benchmarking competitions| 7

2 Benchmarking Modules and Systems| 9
2.1 Rationale and benefitsl oo 9
[2.2 Matrix representation of functionality and task benchmarks/. 10
[2.3 Benchmarks of the 2014 RoCKIn competitions| 11
[2.4 Scoring framework for modules and systems| 12

[3__Task Benchmarks| 15
[3.1 Scoring framework for task benchmarks|. 15
[3.2 An example of task benchmark scoringl 16
[3.3 Combining task rankings| 0000 20

[4 Functionality Benchmarks| 23
[4.1 Scoring framework for tunctionality benchmarks| 23

[4.1.1 Functionality benchmark: task planning 24
[4.1.2 Functionality benchmark: 2D geometric mappingl 25
[4.1.3 Functionality benchmark: 2D selt-localization| 26
[4.1.4 Functionality benchmark: robot path planning/. 27
[4.1.5 Functionality benchmark: robot path following/. 28
4.1.6 Functionality benchmark: object/face detection, recognition, and |

[localizationl 29
[4.1.7 Functionality benchmark: arm path planning| 30
[4.1.8 Functionality benchmark: arm path followingl 32
[4.1.9 Functionality benchmark: grasp planning/ 33
[4.1.10 Functionality benchmark: visual servoing/. 33
[4.1.11 Functionality benchmark: input from humans through speech| 34

[4.2 Combining task and functionality rankings 35

Contents Contents

© 2014 by RoCKIn Team 2 Revision 1.0

Overview

This Deliverable describes the main elements defining the RoCKIn Competitions. The
foundational concepts for such elements were presented, in a general way, by Deliverable
D1.1. Deliverable D1.2 brings such concepts to actuality by providing the guidelines for
the setup of the RoCKIn Competitions. To do this, D1.2 exploits both the theoretical
work and the practical experience done by project RoCKlIn after the publication of D1.1.
Special importance is taken by the RoCKIn Camp 2014 (Rome, January 26th-30th, 2014),
where both the general approach and the actual implementation of Consortium ideas were
successfully tested.

The practical implementation of the criteria, modules, and metrics presented here is
provided by the Rulebooks for the 2014 RoCKIn Competitions (i.e., Deliverables D2.1.1
and D2.1.4). While D1.2 comes later in the life of the RoCKIn project, the concepts
described in this document had a strong influence on the design of the Competitions.
The objective of this document is that of providing both the methodological justification
behind such design, and the details needed to run the RoCKIn Benchmarking Competi-
tions.

The following of this document is organized as follows. Chapter [1| explores the possi-
bilities and limitations inherent in RoCKIn’s use of robot competitions as benchmarking
tools. Chapter [2| describes the particular approach towards benchmarking competitions
chosen by RoCKlIn, based on the idea of combining Task Benchmarks and Functionality
Benchmarks. Finally, Chapters |3| and 4] describe scoring mechanisms and metrics for Task
Benchmarks and Functionality Benchmarks respectively.

Contents Contents

© 2014 by RoCKIn Team 4 Revision 1.0

Chapter 1

Benchmarking Through Competitions

1.1 Robot competitions as benchmarking tools

In recent years, a point of view that considers robotic competitions as experiments has
emerged both within the academic community and at the level of the European Com-
mission, as competitions are considered excellent vehicles for advancing the state of the
art in terms of new algorithms and techniques in the context of a common problem do-
main |1} [4] (6, ©9].

Between competitions and experiments there are some differences: an experiment is
aimed at evaluating objectively a specific hypothesis, while a competition is aimed at
defining a ranking and winners. Moreover, competitions push to development of solu-
tions, while experiments aim at exploring phenomena and sharing results. Nevertheless,
there are a number of reasons for recasting robotics competitions as experiments, con-
sidering traditional experimental principles (comparison, repeatability, reproducibility,
justification, etc.) as guidelines.

Comparison is to know what has been already done in the field, to avoid the repetition
of uninteresting experiments, and to get hints on promising issues to tackle. Reproducibil-
ity is the possibility for independent scientists to verify the results of a given experiment
by repeating it, while repeatability is the property of an experiment that yields the same
outcome when performed at different times and/or in different places. Justification and
explanation deal with the necessity of interpreting experimental data in order to de-
rive correct implications. Competitions usually provide controlled environments where
approaches to solve specific problems can be compared. Furthermore, they require in-
tegrated implementations of complete robotic systems, promoting a new experimental
paradigm trying to complement the rigorous evaluation of specific modules in isolation
(typical of most laboratory research).

An experiment-oriented perspective on competitions could help to reach the aims of
both research and demonstration, while providing a common ground for comparison of
different solutions. Reframing competitions as experiments increases their scientific rigour
while trying to maintain their distinctive aspects. First of all, competitions are appealing
(people like to compete) and they take place with regularity and precise timing, showcasing
the current state-of-the-art in research and industry. More importantly, competitions
challenge their participants to become creative and to coordinate towards solving difficult
problems, attempting to overcome other participants’ similar efforts, ultimately leading
to the development and sharing of novel solutions. Finally, competitions promote critical
analysis of experiments out of labs and they share among participants the cost and effort

1.2. Difficulties, limitations, and perspectives Chapter 1. Benchmarking Through Competitions

of setting up complex experimental installations.

1.2 Difficulties, limitations, and perspectives

Although competitions can be considered as a way of comparing the performance of
robots, their character of one-time and, to some degree, unique events puts some limits
on the generalizability and replicability of their results, and do not necessarily prove that
some robotic systems are better than others in general. As it has been already noticed
[5], robotic competitions are not necessarily experimental procedures but, rather, some of
their features may not fit an assessed experimental methodology. A competition can be
considered as a kind of experiment only if its settings and scoring are properly defined.

Experiments in computing can be intended as the empirical practice to gain and check
knowledge about a system and can be conceptualized in five different ways [10], listed
below ordered by increasing complexity of execution and, more importantly, of general
scientific significance of the results.

o Feasibility experiment. It is the loosest use of the term experiment that can be found
in many works reporting and describing new techniques and tools. Typically, the
term experiment is used in this case with the meaning of empirical demonstration,
intended as an existence of proof of the ability to build a tool or a system.

e Trial experiment. This requires the evaluation of various aspects of a system using
some predefined variables, which are often measured in laboratory, but can occur
also in real contexts of use, possibly given some limitations.

o [ield experiment. It is similar to trial experiment in its aim of evaluating the perfor-
mance of a system against some measures, but it takes place outside the laboratory
in complex socio-technical contexts of use. The system under investigation is thus
tested in a live environment, and features such as performance, usability, or robust-
ness, are measured.

e Comparison experiment. In this case the term experiment refers to comparing dif-
ferent solutions with the goal of looking for the best solution of a specific problem.
Typically, comparison is made in some setup and is based on some measures and
criteria to assess the performance. Thus, alternative systems are compared and, to
make this comparison as rigorous as possible, standard tests and publicly available
data are introduced.

e Controlled experiment. It is the golden standard of experimentation of traditional
scientific disciplines and refers to the original idea of experiment as controlled expe-
rience, where the activity of rigorously controlling (by implementing experimental
principles such as reproducibility or repeatability) the factors that are under in-
vestigation is central, while eliminating the confounding factors, and allowing for
generalization and prediction.

A more complete theoretical work and a more extensive practical experience will be needed
to determine if, and under what conditions, real-world robot competitions can be consid-
ered as scientific experiments. However, many existing robot competitions are designed
in such a way that their position within the above experimental hierarchy is not higher

© 2014 by RoCKIn Team 6 Revision 1.0

Chapter 1. Benchmarking Through Competitions 1.3. The RoCKIn benchmarking competitions

than field experiments. This cannot be considered as a flaw of such competitions, since
they are usually not aimed at being recognized as scientific experiments. The aspira-
tion of the RoCKlIn project is to provide a benchmarking competition, where individual
tasks and functionality benchmarks performed during the competition can be classified
as comparison experiments or even, possibly, controlled experiments.

1.3 The RoCKIn benchmarking competitions

Recasting robotic competitions and challenges as scientific experiments offers the oppor-
tunity for research groups to benchmark approaches against each other so to enhance
the understanding of relative advantages and shortcomings and to have clear measures of
success. In particular, by focusing on benchmarking as a way to objectively evaluate the
performance of a robotic system or subsystem under controlled circumstances, RoCKIn
introduces the idea of benchmarking experiments as scientific experiments.

In RoCKlIn, benchmarking experiments are a specific way of performing experimental
evaluation, of comparing different systems on a common, predefined, setting, and of pro-
viding a set of metrics (e.g., measures, numerical scores, pass or fail, etc.), together with
a proper interpretation to perform an objective evaluation, with the goal of enabling the
reproducibility and repeatability of experiments.

Asreported in the forthcoming Chapter 2, RoCKIn’s approach to benchmarking exper-
iments is based on the definition of two separate, but interconnected, types of benchmarks:

e Functionality Benchmarks, which evaluate the performance of hardware /software
modules dedicated to single, specific functionalities in the context of experiments
focused on such functionalities;

e Task Benchmarks, which assess the performance of integrated robot systems fac-
ing complex tasks that usually require the interaction of different functionalities.

Of the two types, Functionality Benchmarks are certainly the closest to a scientific
experiment. This is due to their much more controlled setting and execution. On the other
side, these specific aspects of Functionality Benchmarks limit their capability to capture
all the important aspects of the overall robot performance in a systemic way. More
specifically, emerging system-level properties, such as the quality of integration between
modules, cannot be assessed with Functional Benchmarks alone. For this reason, the
RoCKIn Competitions integrate them with Task Benchmarks. As reported in Chapter [2]
the integration of the ““more scientific” Functional Benchmarks with Task Benchmarks is
not only useful from the viewpoint of setting up appealing robot competitions, but also
has important methodological justifications.

Revision 1.0 7 (© 2014 by RoCKIn Team

1.3. The RoCKIn benchmarking competitions Chapter 1. Benchmarking Through Competitions

© 2014 by RoCKIn Team 8 Revision 1.0

Chapter 2

Benchmarking Modules and Systems

One of the distinctive features of RoCKln is that, in trying to define competitions that
act as benchmarking tools, it defines two classes of benchmarks: Task Benchmarks
and Functionality Benchmarks. This section is dedicated to explaining the rationale
behind this design choice, and its consequences on the structure of the RoCKIn Compe-
titions.

2.1 Rationale and benefits

One of the key limitations of available robot competitions and benchmarks is that they
focus on either integrated systems or specific modules. For instance, RoboCup@Home
and RoboCup@Work assess the performance of integrated robot systems executing spe-
cific tasks in domestic or factory environments, while the Rawseeds Benchmarking Toolkit
(http://www.rawseeds.org/) is dedicated to benchmarking software modules that im-
plement specific functionalities, such as self-localization, mapping, and SLAM. Unfortu-
nately, focusing only on one of these two approaches (system or module analysis) strongly
limits the possibility to gain useful insight about the performance, limitations, and short-
comings of a complete robot system.

In particular, evaluating only the performance of integrated system is interesting for
the application, but it does not allow to evaluate the single modules that are contribut-
ing to the global performance, nor to put in evidence the aspects needed to push their
development forward. On the other side, the good performance of a module does not
necessarily mean that it will perform well in the integrated system. For this reason, the
RoCKIn Benchmarking Competitions target both aspects, and enable a deeper analysis
of a robot system by combining system-level and module-level benchmarking.

System-level and module-level tests do not investigate the same properties of a robot.
Module-level testing has the benefit of focusing only on the specific functionality that
a module is devoted to, removing interferences due to the performance of other mod-
ules which are intrinsically connected at the system level. For instance, if the grasping
performance of a mobile manipulator is tested by having it autonomously navigate to
the grasping position, visually identify the item to be picked up, and finally grasp it, the
effectiveness of the grasping functionality is affected by the actual position where the nav-
igation module stopped the robot, and by the precision of the vision module in retrieving
the pose and shape of the item. On the other side, if the grasping test is executed by
placing the robot in a predefined known position and by feeding it with precise informa-
tion about the item to be picked up, the final result will be almost exclusively due to the

http://www.rawseeds.org/

2.2. Matrix representation of functionality and task bé&lilchpterks. Benchmarking Modules and Systems

performance of the grasping module itself. The first benchmark can be considered as a
“system-level” benchmark, because it involves more than one functionality of the robot,
and thus has limited worth as a benchmark of the grasping functionality. On the contrary,
the latter test can assess the performance of the grasping module with minimal interfer-
ence from other modules and a high repeatability: it can be classified as “module-level”
benchmark.

However, there are issues that module-level testing cannot assess, though they have a
major impact on real-world robot performance. For instance, the interactions among the
navigation, vision, and grasping modules, which can be considered as disturbance factors
in evaluating the performance of the grasping module, take a crucial role in defining
the actual performance of a robot system in a real setting where grasping is needed.
Performing an experiment that excludes such interactions implies a major loss of useful
information. Here lies the specific worth of system-level robot testing, the only way
to make system-level properties apparent. We already cited the most obvious of them
(i.e., direct interactions among modules), but more subtle ones exist. One of the most
important of these, though very difficult to be measured, is the quality of the integration
between modules. Indeed, autonomous robots are systems of sufficiently high complexity
to make emerging properties having an important role in the definition of the overall
performance of the integrated system. For robots, the performance of single modules (as
assessed by module-level experiments) does not provide reliable, or sufficient, information
about the performance of the complete system once these modules are put together.

For the above described reasons, one of the key elements of the RoCKIn Competi-
tions is the joint presence of module-level and system-level benchmarks. These are called
Functionality benchmarks and Task Benchmarks, respectively. Please note that, although
focused on the module level, Functionality Benchmarks refer to specific functionalities of
a Robot System, they do not address specific software or hardware components of the
Robotic System. In this way, they are not linked to a particular robot architecture with
specific software modules to implement each functionality.

To pass a Functionality Benchmark, the relevant Functional Module of a Robot System
has to face one or more Benchmarking Experiments. Benchmarking Experiments for
Functionality Benchmarks are tightly controlled: i.e., they are set up in such a way that
the involvement of the elements of the Robot System that are not part of the Functional
Module under test is mimimized. To pass a Task Benchmark, a robot system requires to
face a single Benchmarking Experiment requiring the execution of a task in a specified
Scenario. Benchmarking Experiments for Task Benchmarks are less tightly controlled:
the setting is closely controlled, but no strong constraints are set on the execution of the
task.

2.2 Matrix representation of functionality and task bench-
marks

The considerations reported in Section can be represented in matrix form. Let us
consider an imaginary, simplified RoCKIn Competition including five tasks (T1, T2, ...,
T5). Figure describes such imaginary competition as a matrix, showing the tasks as
columns while the lines correspond to the functionalities in principle needed to successfully
execute the tasks.

For the execution of the whole set of tasks of this imaginary RoCKIn Competition, four

© 2014 by RoCKIn Team 10 Revision 1.0

Chapter 2. Benchmarking Modules and Systems

2.3. Benchmarks of the 2014 RoCKIn competitions

Functionality F1

Functionality F2

Functionality F3

Functionality F4

Task
T1

Task
T2

Task
T3

Task
T4

Task
T5

o —>

[
o
[
i

| @ O O
wu
~

Task Task Task
Bench Bench Bench Bench Bench
mark mark mark mark mark
TB1 TB2 TB3 TB4 TB5

Functionality
Benchmark FB1

Functionality
Benchmark FB2

Figure 2.1: Horizontal (functionality) and vertical (task) benchmarking

different functionalities (F1, ..., F4) are required; however, a single task usually requires
only a subset of these functionalities. In Figure 2.1], task Tx requires functionality Fy if
a black dot is present at the crossing between column x and row y. For instance, task T2
does not require functionalities F2 and F4, while task T4 does not require functionality
F1.

Two additional observations conclude this example. First of all, that the RoCKlIn
Competitions always include a Task Benchmark for each task, but they do not include
necessarily a Functionality Benchmark for each of the functionalities required by the
tasks. Secondly, it is possible in some cases to design a Functionality Benchmark so that
it tests more than one functionality at the same time, while allowing to separate their
contributions. This is what happens to FB2 in Figure 2.1, which tests both functionalities
F2 and F4.

2.3 Benchmarks of the 2014 RoCKIn competitions

In this section, we describe the Task Benchmarks and Functionality Benchmarks of the
RoCKlIn 2014 Competitionsﬂ Their relations will be highlighted by using the matrix
representation presented in the previous section.

RoCKIn@Home and RoCKIn@Work include three Tasks Benchmarks and three Func-
tionality Benchmarks each. Table lists them and points out which functionalities are
required for the execution of the tasks, including the functionalities which are required,
but for which no Functionality Benchmark has been defined for the very same RoCKlIn
competition event. All the tasks defined by Table 2.1] will be benchmarked in the 2014
RoCKIn Competitions: in other words, a Task Benchmark has been defined for each

IWhat follows refers to version 1.0 of the RoCKIn@Home rulebook and version 1.1 of the
RoCKIn@Work rulebook.

Revision 1.0 11 © 2014 by RoCKIn Team

2.4. Scoring framework for modules and systems Chapter 2. Benchmarking Modules and Systems

Getting to know my home

Welcoming visitors

Task Planning and Scheduling

2D Mapping

2D Self-Localization

Path Planning (robot base)

Path Following (robot base)
Object/Face Detection

Object /Face Recognition

Object /Face Localization

Object /Person Tracking

Path Planning (robot arm)

Path Following (robot arm)

Grasp Planning

Grasp Execution

Visual servoing (robot arm)

Input from Humans through Speech
Interactive Communication with Humans

—~

skttt

il

! NE DL <] 1| <] | | <] <] <] <] <] 1 | < Catering for Annie’s comfort

' 'EXMNN' DA 4| AL 4| 4| 4] | 4 Prepare assembly tray
! 'ENNNX' vl A4 4] 4] 1 | < Fill box with parts

| ug;x:;x:;x::le DAl 4| <] 4| A< 1 | < Plate drilling

£
N e P P

Table 2.1: Matrix representation of the set of tasks and functionalities considered by the
2014 RoCKIn Competition. X = required; (X) = optional (it can be substituted by offline
procedures or by alternative functionalities or combinations of functionalities); - = not
required (or required, but performed by the testbed).

one of them. In the very same competition some of the functionalities from Table
will undergo Functionality Benchmarks; those Functionality Benchmarks are reported in
Table where non-benchmarked functionalities have been omitted and the remaining
functionalities grouped according to the Functional Benchmarks used to assess them.

2.4 Scoring framework for modules and systems

In order to design a scientifically-grounded competition, the definition of an appropri-
ate scoring is fundamental. Scoring should be easy, clear, unambiguous, and result in a
ranking. In the case of RoOCKIn Competitions the problem of defining the scoring is par-
ticularly complex, as separate scores for Task Benchmarks and Functionality Benchmarks
have been defined. As functionalities vs. tasks dependencies are highly non-linear, cumu-
lative scores are not used. Moreover, interdependencies between tasks and functionalities
have to be considered, for instance, to ensure that teams that excel in some subsystems
(i.e., teams with good scores according to Functional Benchmarks) do not necessarily end

© 2014 by RoCKIn Team 12 Revision 1.0

Chapter 2. Benchmarking Modules and Systems 2.4. Scoring framework for modules and systems

5 .
g g
8 2| =
@ > | 8
el &8 |8 ¢ Z
Sl S le| = 2
S E |82 .
- > .ﬁ D %D =
Qo o0 =z .= =
o = I = T = =
S| E |2 8| < | 8
sl S |E| 8] g 2
B|L B8 = E
O| =2 |0 | & | K| &
FB Planning And Scheduling (@Work)
Task Planning and Scheduling X ‘ - ‘ - ‘ X ‘ X ‘ X
FB Object Perception (@Home)
Object/Face Detection X| X | X| - - _
Object /Face Recognition X| X | X| - R R
Object/Face Localization X| - [X]| - _ _

FB Object Perception (@QWork)
Object /Face Detection - - |- X X | X
Object /Face Recognition - - - X | X | X
Object /Face Localization - - - X | X [X
FB Object Manipulation (@QHome)
Path Planning (robot arm) X X
Path Following (robot arm) X| - | X| - - -
X X
X X

Grasp Planning
Grasp Execution
Visual servoing (robot arm) - - -] - - _

FB Visual Servoing (@Work)
Path Planning (robot arm) - - -1 X
Path Following (robot arm) - - -1 X
Grasp Planning - - - | X
X
X

Grasp Execution - - -
Visual servoing (robot arm) -] - -
FB Speech Understanding (@Home)
Input from Humans through Speech X ‘ X ‘ X ‘ - ‘ - ‘ -

Table 2.2: The 2014 RoCKIn Competitions described in matrix form.

Revision 1.0 13 © 2014 by RoCKIn Team

2.4. Scoring framework for modules and systems Chapter 2. Benchmarking Modules and Systems

up being the winners at the system level (i.e., according to Task Benchmarks), unless
they deserve so. While separate rankings for each Functional Benchmark and each Task
Benchmark will be given at the Competition, it is nonetheless interesting to provide com-
prehensive rankings for robot systems that take into consideration their performance in
multiple Task and/or Functionality Benchmarks. This is a non-trivial problem, and will
be tackled by steps in the following sections of this document.

Chapter [3] is dedicated to the methodology and the metrics designed by RoCKlIn to
define scoring and ranking for Task Benchmarks. First, scoring for single Task Benchmarks
will be considered; then, the approach, and methodology, to the combination of multiple
Task Benchmark rankings will be presented.

Chapter [4] does a similar analysis for Functionality Benchmarks. Differently from
Task Benchmarks, scoring methodologies change significantly from functionality to func-
tionality. For this reason, defining meaningful criteria to combine rankings associated
to different Functionality Benchmarks into a global ranking, as well as combining these
ranking with those associated to Task Benchmark, is not easy. Nonetheless, some insight
about how this could be done will be provided at the end of the chapter, although the
RoCKIn competition for 2014 does not foresee a single ranking combining those.

To make further progress on combining rankings and scores for real-world robot com-
petitions, actual data are needed. For this reason, it will be necessary to wait after the
2014 RoCKIn Competition to see whether and how the proposed criteria provide good
results with real-world data, and (possibly) to devise ways to improve upon such criteria.

Another potential improvement to the 2014 RoCKIn Competition concerns the data
used to define the rankings. In the 2014 Competition, in fact, only external benchmarking
data (i.e., data generated by the testbed and/or the referees) will be used. Internal bench-
marking data (i.e., data generated by the robot systems under test) will be collected but
not used for the rankingg?} After the 2014 Competition, internal benchmarking data will
be used to investigate the relations between the performance of the same robot according
to Functionality and Task Benchmarks. Among the issues which will be investigated is
the opportunity of including some types of internal benchmarking data in the data used
for the rankings of the 2015 RoCKIn Competition.

2 Additional information about these issues can be found in Deliverable 2.1.7.

© 2014 by RoCKIn Team 14 Revision 1.0

Chapter 3

Task Benchmarks

This chapter, as introduced in Section is concerned with the scoring methodologies
and metrics for Task Benchmarks. It is meant to provide both the rationale and practical
hints on how RoCKlIn tasks will be benchmarked during the RoCKIn 2014 Competition.

3.1 Scoring framework for task benchmarks

The scoring framework for the evaluation of the Task Benchmarks in the RoCKIn@Home
and RoCKIn@Work competitions is the same for all Task Benchmarks of RoCKIn@Home
and RoCKIn@Work, and it is based on the concept of performance classes used for
the ranking of robot performance in a specific task.

The performance class that a robot is assigned to is determined by the number of
achievements (or goals) that the robot reaches during its execution of the task. Within
each class (i.e., a performance equivalence class), ranking is defined according to the
number of penalties assigned to the robot. These are assigned to robots that, in the
process of executing the assigned task, make one or more of the errors defined by a task-
specific list associated to the Task Benchmark. More formally:

e The ranking of any robot belonging to performance class N is considered as better
than the performance of any robot belonging to performance class M whenever
M < N. Class 0 is the lowest performance class.

e Among robots belonging to the same performance class, a penalization criterion
is used to define ranking: the robot which received less penalties is considered as
higher in rank.

e Among robots belonging to the same class and with the same number of penalties,
the ranking of the one which accomplished the task in a shorter time is considered
as higher (unless specific constraints on execution time are given as achievements
or penalties).

Performance classes and penalties for a Task Benchmark are indeed task-specific, but
they are grouped according to the following three sets (of which here we define the se-
mantics; the actual content is specific to each Benchmark):

e set DB = disqualifying behaviors, i.e. things that the robot must not do;

e set A = achievements (also called goals), i.e., things that the robot should do;

15

3.2. An example of task benchmark scoring Chapter 3. Task Benchmarks

e set PB = penalizing behaviors, i.e., things that the robot should not do.

Once the content of each of the previous sets is provided as part of the specifications
of the relevant Task Benchmark, to apply the RoCKIn scoring framework the following
3-step sorting algorithm can be used:

1. if one or more of the disqualifying behaviors of set DB occur during task execution,
the robot gets disqualified (i.e., assigned to class 0, the lowest possible performance
class), and no further scoring procedures are performed for it;

2. the robot is assigned to performance class X, where X corresponds to the number
of achievements of set A which have been accomplished by the robotE];

3. a penalization is assigned to the robot for each behavior of the robot belonging to
set PB that occurs during the execution of the taskE].

One key property of this scoring system is that a robot that executes the required
task completely will always be placed into a higher performance class than a robot that
executes the task partially. In fact, penalties do not change the performance class assigned
to a robot and only influence intra-class ranking. It is also possible to envisage the use
of differently weighted penalties; however, this makes the ranking criteria less easy to
understand; therefore weighing will not be implemented unless a clear need for it will
emerge after the 2014 RoCKIn Competition.

3.2 An example of task benchmark scoring

This section will act both as example of the scoring framework described by Section
B.1] and as an illustration of the flexibility of such framework in dealing with different
situations. Additional operative details may be found in the Rulebooks for the 2014
RoCKIn Competition.

We begin by selecting an example Task Benchmark: for instance the first of RoCKIn-
@Home, “Catering for Granny Annie’s comfort”. The task requires that the robot, execut-
ing commands issued by voice by Annid] first operates a household device, then brings
to Annie an object, for instance, the glasses that (as she says to the robot) she left on the
kitchen table.

For simplicity, in the following we will focus on the second part of the task (finding
and fetching the object) and from a very limited set of achievements an penalties; the
sets used to define performance equivalence classes are the following]

e set DB (disqualifying behaviors) is composed of the following events:

IThese sets do not contain repetitions, thus is a given achievement has to be accomplished multiple
times, there will be as many distinctive instances of that achievement as required by the task. For
instance, if the task requires to serve 4 guests during dinner, there will be 4 items in set A, one for each
guest.

2Unless clearly specified the errors must occur once to give a penalty, and repeated errors do not
cumulate.

3 Annie is the fictional character of an elderly lady (played by a physical person) that is described
in the RoOCKIn@Home Rulebook. For some Task Benchmarks, Annie interacts with robots and assigns
duties to them.

4What follows refers to version 1.0 of the RoCKIn@Home Rulebook. It is possible that the sets will
be integrated with new elements in subsequent editions.

© 2014 by RoCKIn Team 16 Revision 1.0

Chapter 3. Task Benchmarks 3.2. An example of task benchmark scoring

— the robot hits Annie or another person in the environment
— the robot damages or destroys the objects requested to be manipulated

— the robot damages the test bed

e set A (achievements) includes the following goals:

— the robot understands Annie’s command

the robot operates correctly the right device
— the robot finds the right object
— the robot the robot brings to Annie the right object

e set PB (penalizing behaviors) for this task is composed of:

— the robot bumps into the furniture

— the robot stops working

The following are some possible examples of performance classification:

a)

The robot understands Annie at the first attempt, goes to the kitchen, grasps the
right object. Then it brings it back to Annie: performance class 5 (command
understood, robot in the kitchen, correct object reported, correct object on the
robot, correct object handled to Annie). No penalties.

The robot understands Annie after three attempts, goes to the kitchen, but grasps
the wrong object. Then it brings it back to Annie: performance class 2 (command
understood, robot in the kitchen). No penalties.

The robot understands Annie after three attempts, goes to the kitchen and stops:
performance class 2 + 1 penalty (command understood, robot in the right place,
but robot stopped working). Within class 2, rank is lower wrt (b).

The robot understands Annie at the first attempt, goes to the kitchen, but grasps
the wrong object. Then it brings it back to Annie, but it bumps into a chair in the
meanwhile: performance class 2 + 1 penalty. Within class 2, rank is lower wrt (b);
rank wrt (c) depends on execution time.

The robot understands Annie at the first attempt, goes to the kitchen, reports the
position of the right object, but it cannot grasp it: performance class 3 (command
understood, robot in the kitchen, object position reported). No penalties.

Let now increase the level of details in the Task Benchmark description and then
refine the performance classes consistently. We are still in the case where the robot goes
to Annie and she asks it to bring her a specific pair of glasses which she probably left in
the kitchen. In this case we are interested in the robot exploiting additional information
from Annie and the presence of Networked Devices in the environment. The sets used to
define performance equivalence classes now become:

set DB (disqualifying behaviors) is composed of the following events:

— the robot hits Annie or another person in the environment

Revision 1.0 17 © 2014 by RoCKIn Team

3.2. An example of task benchmark scoring Chapter 3. Task Benchmarks

— the robot damages or destroys the objects requested to be manipulated

— the robot damages the test bed

e set A (achievements) includes the following goals:

— the robot understands Annie’s command

— the robot reaches the location suggested by Annie
— the robot reports the position of the right glasses
— the robot holds the right glasses

— the robot handles the right glasses to Annie

e set PB (penalizing behaviors) for this task is composed of:

— the robot bumps into the furniture

— the robot understands the command only after several (> 2) repetitions

— the robot does not exploit Networked Robot Systems (NRS) when required
— the robot does not take Annie’s suggestions into account

— the robot does not leave the lighting in the same state it found it

— the robot missclassifies objects

— the robot stops working

The following are some possible examples of performance classification in this more com-
plex Task Benchmark scoring specification assuming all the achievements have been
reached:

a)

b)

Robot understands Annie only after 3 repetitions (when only two are allowed with-
out penalty): performance class 5 + 1 penalty (+ time in case of ties)

Robot is not exploiting NRS devices when required: performance class 5 + 1 penalty
(+ time in case of ties)

Robot collides with 2 chairs: performance class 5 + 1 penalty (but possibly less
time is needed)

Robot is not taking into account the suggestions from Annie: class 5 + 1 penalty
(+ possibly more time is needed in case of ties)

Robot does not leave the lighting in the same state it found it: performance class 5
+ 1 penalty (+ time in case of ties)

Robot hits Annie: performance class 0

Robot drops the glasses (breaking them): performance class 0

The ranking in the previous simulations is mostly dominated by time and by the fact that
most teams acquired a penalty. Let us observe what happens when a robot is not able to
accomplish all required achievements:

© 2014 by RoCKIn Team 18 Revision 1.0

Chapter 3. Task Benchmarks 3.2. An example of task benchmark scoring

h)

Robot stops working while carrying the (right) glasses: class 4 (assumed: command
by Annie understood, robot reaches the location suggested by Annie, robot reports
the position of the right glasses, robot holds the right glasses)

Robot brings the wrong glasses and stops execution: class 3 (assumed: command
by Annie understood, robot reaches the location suggested by Annie)

Robot drops the right glasses: performance class 0

Robot finds the right glasses but is not able to grasp them: class 3 (assumed:
command by Annie understood, robot reaches the location suggested by Annie,
robot reports the position of the right glasses)

Robot stops working after finding the glasses: class 3 (assumed: command by An-
nie understood, robot reaches the location suggested by Annie, robot reports the
position of the right glasses)

Robot cannot detect the glasses: performance class 2 (assumed: command by Annie
understood, robot reaches the location suggested by Annie)

Robot cannot find the location where the glasses are located: performance class 1
(assumed: command by Annie understood)

Robot stops working during the search: performance class 1 (assumed: command
by Annie understood)

We may have also cases where the task was completed, but in an unsatisfactory way:

p)

Robot brings several glasses. Among them are the right glasses as well: performance
class 5 (assumed: command by Annie understood, robot reaches the location sug-
gested by Annie, robot reports the position of the right glasses, robot holds the right
glasses, robot handles the right glasses to Annie) + 1 penalty because of dealing
with wrong objects

Robot brings the right glasses on the second trial: performance class 5 (command
by Annie understood, robot reaches the location suggested by Annie, robot reports
the position of the right glasses, robot holds the right glasses, robot handles the
right glasses to Annie) + 1 penalty because of dealing with wrong item -+ more
time is needed

Robot needs 2x time than the fastest robot to do the same task in the competition:
performance class 5 (command by Annie understood, robot reaches the location
suggested by Annie, robot reports the position of the right glasses, robot holds the
right glasses, robot handles the right glasses to Annie) + more time is needed

Robot reports the right position of the glasses but cannot bring them to Annie:
class 3, (command by Annie understood, robot reaches the location suggested by
Annie, robot reports the position of the right glasses) but less time is needed to
perform the task

Revision 1.0 19 © 2014 by RoCKIn Team

3.3. Combining task rankings Chapter 3. Task Benchmarks

3.3 Combining task rankings

The RoCKIn Competitions are organized in a number of Task Benchmarks’] that are
evaluated and scored as explained in the previous sections. So far we have discussed the
framework for the ranking of one task, now let assume we have three possibly different
rankings of teams out of three Task Benchmarks. In this case we are interested in deciding
which is the winning team of the competition. Provided a team has to participate, and
get class 1 at least, we will decide the winning team by a social welfare function, i.e., rank
combination.

In general, social welfare functions can be analyzed according to the properties they
satisfy (see http://en.wikipedia.org/wiki/Voting_system). More specifically, the
Condorcet criterion of social welfare functions states that a Condorcet winner must be
selected when one exists. The Condorcet winner is the team that, when compared with
every other team, is preferred in all the three rankings. The Independence of Irrelevant
Alternatives (ITA) says that if team A is better than team B out of the choice set {A B}
by a social welfare function combining the three rankings that include A, B, and a third
team X, then if only the position of X changes in the rankings, the social welfare function
must not lead to B’s being preferred over A. In other words, whether team A or team B is
better should not be affected by the position of team X, which is irrelevant to the choice
between A and B.

A possible rank combination is based on the social welfare function called Borda count.
According to Borda count, a team A receives k points if in a Task Benchmark ranking,
team A has performed better than k other teams. All the points for all teams are cal-
culated and a global ranking is determined. For example, consider the rankings for the
three Task Benchmarks of Table [3.1] In this case, team A gets 3+ 3+ 0 = 6 points, team
B gets 24243 = 7 points, team C gets 1+0+2 = 3 points, and team D gets 0+1+4+1 =2
points. Hence, the global ranking is B (best), A, C, D (worst).

Table 3.1: An example of rankings with three tasks and four teams (A to D)

Rank | Task 1 | Task 2 | Task 3
1 A A B
2 B B C
3 C D D
4 D C A

The Borda count does not satisfy, in general, the Condorcet criterion nor the ITA. An
alternative social welfare function for combining task rankings is based on the Copeland’s
rule. A team gets a point for every pairwise win (according to the majority of the rank-
ings), one half point for pairwise ties, and zero points for pairwise loses. After all the
possible pairwise matches between teams, the points of each team determine the global
ranking. In the example of Table , team A gets 3 points (it wins against team B,
because it is placed before B in two out of three rankings, and against teams C and D),
team B gets 2 points (it wins against teams C and D, but it looses against team A), team
C gets 1 point (it wins against team D, but it looses against teams A and B), team D
gets 0 points (it looses against all other teams). Hence, the global ranking is A (best), B,

5Specifically: 3 @Home Task Benchmarks and 3 @Work Task Benchmark for the RoCKIn 2014 edition.

© 2014 by RoCKIn Team 20 Revision 1.0

Chapter 3. Task Benchmarks 3.3. Combining task rankings

C, D (worst). The Copeland’s rule satisfies the Condorcet criterion but, in general, not
the the ITA.

There are dozens of other social welfare functions, some of them satisfying Condorcet
criterion or ITA. However, most of these alternative social welfare functions are not in-
tuitively easy to calculate and, as such, do not appear to be suitable for employment in
the RoCKIn Competitions. In the 2014 RoCKIn Competition, the Borda count will be
used because of its easy formulation. Other alternative social welfare functions for com-
bining task rankings, such as the Copeland’s rule, will be evaluated to be applied in the
RoCKlIn 2015 Competition, only after the 2014 RoCKIn Competitions in case the need
to compensate for possible distortions will arise.

Revision 1.0 21 © 2014 by RoCKIn Team

3.3. Combining task rankings Chapter 3. Task Benchmarks

© 2014 by RoCKIn Team 22 Revision 1.0

Chapter 4

Functionality Benchmarks

This chapter, as introduced in Section is concerned with the scoring methodologies
and metrics for Functionality Benchmarks.

4.1 Scoring framework for functionality benchmarks

As anticipated by Section it is not possible to define a single scoring framework for
all Functionality Benchmarks as it has been done for Task Benchmarks in the previous
chapter. These, in fact, are specialized benchmarks, tightly focused on a single function-
ality, assessing how it operates and not (or not only) the final result of its operation.
As a consequence, scoring mechanisms for Functionality Benchmarks cannot ignore how
the functionality operates, and metrics are strictly connected to the features of the func-
tionality. For this reason, differently from what has been done for Task Benchmarks in
Chapter [3] this chapter will define scoring methodologies and metrics separately for each
Functionality Benchmark of the 2014 RoCKIn Competition.

In RoCKlIn, Functionality Benchmarks are defined by four elements:
e Description: a high level, general, description of the functionality.

e Input/Output: the information available to the module implementing the function-
ality when executed, and the expected outcome.

e Benchmarking data: the data needed to perform the evaluation of the performance
of the functional module.

e Metrics: algorithms to process benchmarking data in an objective way.

The following of this section describes these four elements for each of the function-
alities that will be benchmarked during the 2014 RoCKIn Competition ether through
Functionality Benchmarks or, indirectly, through Task Benchmarks. Additional opera-
tive details may be found in the Rulebooks for the Competition; in particular, whenever
multiple metrics to evaluate a Functional Benchmarks exist, we provide a procedure to
come at a unique unambiguous ranking among the participants through their aggregation
or prioritization.

23

4.1. Scoring framework for functionality benchmarks Chapter 4. Functionality Benchmarks

4.1.1 Functionality benchmark: task planning

Description: Starting from a high level description of a problem domain (initial state
and applicable actions) and a desired goal, find a set of actions which will lead the
robot to the desired goal.

Input/Output: Input is a description of the current state and the goal expressed as
statements in PDDIJT} Also possible actions should be specified in PDDL with their
preconditions and effects. Output is a plan, expressed as a sequence of actions, a
partial order of plan steps, a task network, or a policy function mapping states into
actions.

Benchmarking data: Some data has to be supplied by the robot, including: the input
given to the planner, the output (i.e., the plan) delivered by the planner, and the
performance data for the planner (e.g., memory and time needed). According to
the planning approach, other data might be required, e.g., the formulation of the
domain used by the planner; if SAT-based planners are compared, this requires
the number of clauses in 3CNF generated by the transformation of the planning
problem into the propositional representation; for graph-based planners the depth
of the generated planning graph assumes a similar role; for policy based planners
the generated policy function. Other data will be possibly collected when a plan is
actually executed, including: time needed to execute each action and time needed
to execute the whole plan.

Metrics: There is a long tradition of measuring plan performance in the International
Planning Competitionﬂ, where metrics are mainly related to good plan quality and
to solving time. RoCKIn builds on this experience and defines the metrics listed
below. The target of benchmarking task planning is twofold: to asses the quality
of the plan produced (e.g., in terms of the cost for executing it and its likelihood to
succeed) and to assess the quality of the planning process (i.e., how fast is the plan
generated and how much resources are needed to do so).

e Quality of resulting plans is measured according to the number of correctly
planned actions, considering also their order. Specifically, given the optimal
plan, represented as an ordered list of actions, and a plan to be evaluated, also
represented as an ordered list of actions, the Levenshtein distance between the
two lists is calculated to measure the quality of the plan. Levenshtein distance
Lap(JA|,|B|) between two lists A and B is calculated as:

Lap(i,j) = max(i, 7) if min(i,7) =0
Lap(i,j)= min(Lag(i—1,75)+1,
Lap(i,j—1)+1,
Lap(i—1,7—1)+1q,4,) otherwise

where |A[is the length of list A (same for B) and 14,4, is 0 is a; = b; and 1
otherwise. In case of plan defined in terms of policy function, the policy is first

http://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
’http://ipc.icaps-conference.org/

© 2014 by RoCKIn Team 24 Revision 1.0

http://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
http://ipc.icaps-conference.org/

Chapter 4. Functionality Benchmarks 4.1. Scoring framework for functionality benchmarks

executed from the start state to the goal state in order to retrieve the list of
actions that has to be evaluated. This is a integer-valued metric; the smaller
the better.

e Number of actions correctly performed in the correct order (e.g., number of
objects delivered to their correct destination) within a given time frame (e.g.,
10 minutes) when executing the plan. In case of plan defined in terms of
policy function, the policy is first executed from the start state to the goal
state in order to retrieve the list of actions that has to be evaluated. This is a
integer-valued metric; the larger the better.

e Time required to construct a plan. This is a real-valued metric; the smaller
the better.

e Time required to execute the single actions of a plan and the whole plan. This
is a real-valued metric; the smaller the better.

4.1.2 Functionality benchmark: 2D geometric mapping

Description: Starting from a given pose in the testbed, build a map of it. In this
context, a map is defined as “any digital representation of the environment suitable
for performing other functionalities (e.g., self-localization, path planning, etc.)”.
Depending on the specific robot platform under test, mapping requires a more or
less extended exploration of the testbed.

Input/Output: Sensor data provided by the devices of the robot system under test.
Optionally (depending on the specific benchmark) additional data (e.g., video) may
be provided by devices that are part of the testbed together with the set of poses tra-
versed by the robot. The expected output is the representation of the environment
which is most suitable for the intended use.

Benchmarking data: Given a set of physical points on the testbed (e.g., extreme points
of intersection lines between surfaces like the top and bottom corners of the edge
connecting two walls or the end points of the edge of a table) identified by RoCKln,
benchmarking data are the Euclidean distances between each pair of such points,
as evaluated on the map, on the horizontal (x,) planeﬂ and the true distances in
the environment (i.e., the ground truth). The team responsible for the robot can
choose one of the following ways to compute such distances:

e provide RoCKlIn personnel with the map built by the robot and with readily
usable software tools (e.g., Matlab scripts) to process it in order to perform
point selection and distance computation;

e perform point selection and distance computation manually under supervision
of the RoCKIn personnel; in this case, the team is also required to provide a

3The use of derived quantities (such as distances) instead of direct analysis of the map makes the
benchmark largely independent from the representation of the map. This is a key issue, as it ensures that
robot systems are not forced to use any specific representation for their maps. The choice of distances
as derived quantities is due to (i) their clear physical significance and (ii) their strong connection to the
possibility of using the map to plan accurate and feasible paths through cluttered environments.

Revision 1.0 25 © 2014 by RoCKIn Team

4.1. Scoring framework for functionality benchmarks Chapter 4. Functionality Benchmarks

description of the algorithms used for these operations, and to accept scrutiny
and /or recomputation by competing teamsﬂ

Metrics: The following metrics explore two key aspects of the mapping process:

e Time required to provide a map complete with a representation of all the
physical points composing the set used for benchmarking. This is a real-valued
metric; the smaller the better.

e Average and maximum error of the reconstructed distances against the ground
truth distances’] These are real valued metrics; the smaller the better.

e Percentage of mapped area (as measured by the percentage of mapped RoCKIn
reference points) in a given time interval; the higher the better.

4.1.3 Functionality benchmark: 2D self-localization

Description: Being able to estimate the robot’s own pose (i.e., z and y position +
orientation @) with respect to a known fixed reference frame in a mapﬂ while moving
through it.

Input/Output: Having a map (either previously acquired by the robot or provided by
the organizers) and some sensor data, the robot provides a (sequence of) 3DoF pose
estimate(s) with respect to a known fixed reference frame in the map (an initial
estimation of the relative pose of this reference frame and of the robot reference
frame could be needed). The robot could move to perform self-localization especially
in the case of “kidnapping”. The pose estimate is (optionally) accompanied by an
estimate of its uncertainty (e.g., through the use of the first K moments of its
distribution).

Benchmarking data: the sequence of poses estimated by the robot during a path (the
path could be provided[z], or it could be “random”), possibly with their uncertainty
estimation. A ground truth measurement of the sequence of poses of the robot
during its movement; the two sequences should be synchronized and should be
referred to a common reference system]

Metrics: Several metrics are possible, each of which measuring a different aspect of this
functionality.

4Complexity of application is the main drawback of the representation-independent nature of this
benchmark. Practical difficulties of execution could easily prove to be excessive for the quick-paced
timing of a competition event.

5These have to be evaluated with high precision. One way to do this is by measuring point locations
with the same ground truth localization system used to measure robot position, then computing distances
using such measurements.

6Tn self-localization, we stress the idea of being able to use sensors looking at the environment features,
possibly represented in a map, and we do not assume the robot to have absolute localization sensors, e.g.,
GPS. The case where the robot has a global sensor could be named as localization.

"The need for a given path is related to the repeatability of the benchmark; an example of this could
be the UMBmark for odometry evaluation.

80r it should be possible to refer the two sequences to a common time base and reference frame by
post processing.

© 2014 by RoCKIn Team 26 Revision 1.0

Chapter 4. Functionality Benchmarks 4.1. Scoring framework for functionality benchmarks

e Time required to self-localize from an unknown pose (“kidnapped robot”) with
a position error below a given threshold. If the self-localization algorithm is
not able to obtain an adequate accuracy in positioning, we consider the time
required to reach a position for which the error does not change for a given
amount of time. This is a real valued metric; the smaller the better.

e Relative Pose Error (RPE) [3] measures the local accuracy of the trajectory
over a fixed time interval. Therefore, the relative pose error corresponds to the
drift of the trajectory which is in particular useful for the evaluation of visual
odometry systems. This is a real-valued metrics; the smaller the better.

e Average and maximum relative pose error on a given path. These are real
valued metrics; the smaller the better.

e Average and maximum relative pose error on a path of a given length. These
are normalized real valued metrics between 0 and 1; the smaller the better.

4.1.4 Functionality benchmark: robot path planning

Description: Determine the sequence of poses the robot should take for moving from a
starting position to a goal position. This sequence should be executable by the robot
and should keep the robot away from obstacles (i.e., not incurring in a collision).

Input/Output: A starting pose and a goal pose are given to the robot together with a
map of the environment with known static obstacles. Path planning can produce
either (i) a continuous geometric path described in terms of geometric primitives
and (optionally) speed profile along it or (ii) a sequence of poses from the starting
one to the goal one which the robot should reach during time, and (optionally)
a speed profile along the path or (iii) a sequence of actions (commands to the
base) to be executed from the starting pose to the goal pose (commands could
be in terms of wheels speed or angular/tangential robot Speed)ﬂ As part of the
benchmark (optional) requirements could be set on the kinematics of the robot,
dynamic constraints on the path to be generated. A map with static objects to be
avoided while moving and the footprint of the robot are available for path planning.

Benchmarking data: A sequence of poses to be reached during time and (optionally)
the speed of the robot when reaching them (absolute speed in world reference frame)
or a sequence of commands to be executed by the robot from the starting pose to the
goal pose. The time required to perform this planning should be provided too. A
method to interpolate consecutive poses could be necessary, for example to calculate
the length of a path (see below).

Metrics: Several metrics are possible, each of which measures a different aspect of this
functionality. For each of them, we have a theoretical value when we assume the
real robot to obey its kinematic/dynamic model, or empirical value if we measure
it during an empirical run (or several runs). In case it is measured empirically we
should keep in mind it is “affected” by the quality of the execution of the run and
we need to acquire ground truth data as well. In the following we refer to the

9In this case, in principle, any evaluation of the plan should consider also kinematics and dynamics
properties of the robot, so that commands could really be executed, otherwise measures such as length
and time required to execute a plan can be easily optimized with unrealistic assumptions.

Revision 1.0 27 © 2014 by RoCKIn Team

4.1. Scoring framework for functionality benchmarks Chapter 4. Functionality Benchmarks

theoretical case so to keep this Functionality Benchmarking as much independent
from path following as possible; all following metrics can be applied to the empirical
evaluation as well:

e Feasibility of the path, i.e., it starts from the starting pose + it ends in the
goal pose + it does not hit obstacles + it respects (optional) kinematic and
dynamic constraints. This is a Boolean metric; true is better.

e Time required to obtain the path from its request to the result, provided that
the path is feasible. This is a real valued metric; the smaller the better.

e Time required by the robot to execute the planned path from the starting pose
to the goal pose, provided the path is feasible. This is a real valued metric; the
smaller the better.

e Length of the planned path from the starting pose to the goal pose, provided
that the path is feasible. This is a real valued metric; the smaller the better.

e Linear quadratic (LQ) cost function (derived from linear quadratic optimal
control theory)

T=3 /Ooo[xT(t)Qx(t) +u” (t)Ru(t)] - dt (4.1)

where the cost function can be thought of physically representing the control
energy (measured as a quadratic form)lr_UI. This is applicable only when the se-
quence of commands is provided as output by path planning, and it is assumed
to be valid if the path is feasible. This is a real valued metric; the smaller the
better.

e Average/minimal /maximal distance from obstacles; depending on the final aim
of the plan we could have both the higher and the lower the better (provided
we do not collide).

4.1.5 Functionality benchmark: robot path following

Description: A given point of the robot (e.g., the center of its footprint) should follow
a path defined on a map or according to some known reference system, eventually
with a pre-defined timing.

Input/Output: the input is a path described either by a generic curve in space (eventu-
ally annotated with time and speed), or by a sequence of poses (eventually annotated
with time and speed), or by a sequence of actions for each of which the expected
effect is known and measurable. On the path there might be obstacles, i.e., objects
that may prevent the robot to follow the path (in this case the robot is expected
to stop and signal the problem). The position, and footprint at different heights, of
each obstacle can be either communicated to the robot or perceived through sensors.
Obstacles can be either fixed or mobile. The movement law of the obstacles can be
either communicated to the robot or learned from data perceived through sensors.

10A]] terms in this formula need to be specified according to the specific instance of this Functionality
Benchmark.

© 2014 by RoCKIn Team 28 Revision 1.0

Chapter 4. Functionality Benchmarks 4.1. Scoring framework for functionality benchmarks

Benchmarking data: A sequence of real positions in space and time of the defined point
of the robot, or of points of the robot that can be tracked, if their position relative
to the defined point is provided. Resolution in space or time of this sequence is pre-
defined according to the benchmarking goals and the quality of the tracking device.
Optionally the sequence of commands executed by the robot can be provided to
compute the control energy.

Metrics: Several metrics are possible, each of which measuring a different aspect of this
functionality.

e Distance from the path, computed as sum of the distance from real poses in
space and time to the planned poses normalized by the number of poses. Also
average and max of distances might be considered. To be minimized. Note that
this also provides an evaluation of obstacle avoidance if the same obstacles are
presented in a repeatable way. Real-valued metric.

e Linear quadratic (LQ) cost function (derived from linear quadratic optimal
control theory) in the empirical case (see Equation . This is applicable
only when the sequence of commands is provided as output as well. This is a
real valued metric; the smaller the better.

e Percentage of hit obstacles wrt the total number of the ones faced. This might
also be split according to the different nature of obstacles: fixed, mobile, known
a priori, unknown, etc. This is a real-valued metric, the smaller the better.

e Having specified a minimal distance from obstacles, compute the number of
times the robot is closer than a threshold to obstacles during the path or the
expected value of such distance. This metric is related to robot safety, the
smaller the better in case of number of times closer, the higher the better in
the case of expected value of the distance.

4.1.6 Functionality benchmark: object/face detection, recogni-
tion, and localization

Description: E By using proprioceptive sensors the robot perceives the presence of spe-
cific items in the environment. Objects belong to a given class or category (e.g.,
kitchenware, bolts, faces, glasses, boxes, pets, cans, etc.); we refer to object detection
when the functionality provides only information about the class of the perceived
objects. For each class several instances of objects exists; object recognition func-
tionality provides information about the specific instance of an object within a given
class (e.g., Paul’s face, Mountain Dew can, Hex Cap 10mm Anodized bolt, etc.).

Input/Output: Sensor data by the devices of the robot system under testlr_zl. In the
case of object detection, the set of categories the object belong to is know to the
robot together with a description] for each of them and the expected output is the

HSince the functionality of Face Detection is a specific case of the more general Object Detection we
decide to merge those together is a single description.

12 Although the most used sensors for object detection and recognition are cameras, either 2D or 3D,
here we left the perception system intentionally unspecified since the functionality (not its performance)
is independent from that.

13 An object description can be at different levels; as general as an ontology description or as specific
as a detailed metrical or appearance based (set of) model(s).

Revision 1.0 29 © 2014 by RoCKIn Team

4.1. Scoring framework for functionality benchmarks Chapter 4. Functionality Benchmarks

notification of the presence or absence of an object of a given category in the scene.
In the case of object recognition, a label for each instance of each class is also know
to the robot together with its description and the expected output is the label of the
recognized object. In case of localization 3D models of the objects to be localized,
together with a reference frame for the objects, can be optionally provided to the
robot, and the expected output is the object pose, i.e., position and orientation, of
the object reference frame with respect to a world, or robot, reference frame.

Benchmarking data: Given a set of objects from a list of possible instances the robot
is shown an object and it has to provide a notification with the label of the class, in
case of object detection, the label of the specific instance of the shown object, in case
of object recognition, and the 3D pose of the object, i.e., position and orientation,
in case of localization. This benchmark can be run also “in the wild” that is the
robot is guided in an environment, or is provided a pre-recorded stream of sensory
input, and it has to provide notifications and poses of all recognized objects (or from
a specific category).

Metrics: Several metrics are possible, most of them being inspired by object retrieval
benchmarking best practices:

e Accuracy of recognition measured as percentage of correctly classified /recognized
objects among the ones presented to the robot. This applies also to the “in the
wild” modality; this is a real-valued metrics, the higher the better.

e Precision and Recall might be better metrics when multiple objects, possibly in
multiple instances, are simultaneously presented to the robot, or are present “in
the wild”; the former counts the number of correctly detected/identified items
among those that have been detected/identified (it is similar to the accuracy,
but applies only to the object which have been notified), the latter counts
the number of items detected /identified among those which are present in the
observed scene. In both cases the higher the better although a high recall
might be quite misleading and should be associated to a high precision as well.
To deal with the precision-recall trade-off the two metrics are often combined
in the so called F-measure which is the harmonic mean of the two; also the
F-measure is a real-valued metrics, so the higher the better.

e Pose error for all correctly identified objects can be used to evaluate the perfor-
mance of object localization. Different importance can be done in evaluation
translational part and rotational part of the object pose; if needed, a distance
comprising the two aspects could be devised by using the SE(3) algebra. It is
a real-valued metric; the smaller the better.

e Time required to execute the recognition /identification/localization, including
the time to process the data input. It is a real-valued metric; the smaller the
better.

4.1.7 Functionality benchmark: arm path planning

Description: Determine the sequence of poses the robot end effector (or arm) should
take for moving from a starting position to a goal position. This plan could be
done also in the joint space thus the sequence of poses is implicitly determined

© 2014 by RoCKIn Team 30 Revision 1.0

Chapter 4. Functionality Benchmarks 4.1. Scoring framework for functionality benchmarks

by a sequence of joint positions/velocities/accelerations. This sequence should be
executable by the robot and should keep the robot away from obstacles (i.e., not
incurring in a collision with an obstacle or with the robot body itself).

Input/Output: A starting configuration and a goal configuration are given for the robot
end effector together with a representation of the environment containing known
static obstacles. Arm path planning can produce either (i) a continuous set of
trajectories for the robot arm joints described in terms of joint positions and (op-
tionally) speed / acceleration profiles or (ii) a sequence of poses for the end effector
from the starting pose to the goal pose which the robot should reach during time
(point-to-point motion), and (optionally) a speed profile along the path or (iii) a
sequence of motion primitives for the end effector to be executed from the starting
pose to the goal pose (commands could be in terms of linear motion, circular mo-
tion, etc.). As part of the benchmark (optional) requirements could be set on the
kinematics of the robot and/or dynamic constraints on the path to be generated.
A map with static objects to be avoided while moving and the shape of the robot
body are available for path planning.

Benchmarking data: A sequence of poses for the end effector to be reached during
time and (optionally) the speed of the robot when reaching them (absolute speed in
world reference frame) or a set of joint trajectories (described by possibly different
kinematic quantities) to be executed by the robot controller from the starting po-
sition to the goal position or a set of motion primitives to be executed in sequence
by the robot arm controller. The time required to the algorithm to perform this
planning should be provided too. A method to interpolate consecutive poses could
be necessary, for example to calculate the exact length of a path (see below).

Metrics: Several metrics are possible, each of which measures a different aspect of this
functionality. For each of them, we have a theoretical value when we assume the
real robot to obey its kinematic/dynamic model, or empirical value if we measure
it during an empirical run (or several runs). In case it is measured empirically we
should keep in mind it is “affected” by the quality of the execution of the run and
we need to acquire ground truth data as well. In the following we refer to the
theoretical case so to keep this Functionality Benchmarking as much independent
from path following as possible; all following metrics can be applied to the empirical
evaluation as well:

e Feasibility of the path, i.e., it starts from the starting pose + it ends in the
goal pose + it does not hit obstacles + it respects (optional) kinematic and
dynamic constraints. This is a Boolean metric; true is better.

e Time required to obtain the path from its request to the result, provided that
the path is feasible. This is a real valued metric; the smaller the better.

e Time required by the robot to execute the planned path from the starting pose
to the goal pose, provided the path is feasible. This is a real valued metric; the
smaller the better.

e Length of the planned path from the starting pose to the goal pose, provided
that the path is feasible. This is a real valued metric; the smaller the better.

e Linear quadratic (LQ) cost function (derived from linear quadratic optimal
control theory) in the empirical case (see Equation [£.1)). This is applicable

Revision 1.0 31 © 2014 by RoCKIn Team

4.1. Scoring framework for functionality benchmarks Chapter 4. Functionality Benchmarks

only when the sequence of commands is provided as output as well. This is a
real valued metric; the smaller the better.

e Average/minimal /maximal distance from obstacles; depending on the final aim
of the plan we could have both the higher and the lower the better (provided
we do not collide).

4.1.8 Functionality benchmark: arm path following

Description: The robot end effector should follow a path defined according to some
known reference system either in a cartesian space or in the joint space, with a
pre-defined timing, and optionally with prescribed speeds and accelerations.

Input/Output: the input is a path for the end effector described either by a generic
curve in space (eventually annotated with time and speed), or by a sequence of
poses (eventually annotated with time and speed), or by a set of joint trajectories
(eventually annotatoed with speed and acceleration), or by a sequence of predefined
known motion primitives. On the path there might be obstacles, i.e., objects that
may prevent the robot to follow the path (in this case the robot is expected to stop
and signal the problem). The position, and footprint at different heights, of each
obstacle can be either communicated to the robot or perceived through sensors.
Obstacles can be either fixed or mobile. The movement law of the obstacles can be
either communicated to the robot or learned from data perceived through sensors.

Benchmarking data: A sequence of real positions in space assumed by the end effector
while moving, or of points of the robot that can be tracked, if their position relative
to the end effector is provided, with corresponding timing. Resolution in space or
time of this sequence is pre-defined according to the benchmarking goals and the
quality of the tracking device. Optionally the sequence of commands executed by
the robot can be provided to compute the control energy. As ground truth for joint
space trajectory following, joint angles during time are acquired.

Metrics: Several metrics are possible, each of which measuring a different aspect of this
functionality.

e Distance from the path, computed as sum of the distance from real poses in
space and time to the planned poses normalized by the number of poses. Also
average and max of distances might be considered. To be minimized. Note that
this also provides an evaluation of obstacle avoidance if the same obstacles are
presented in a repeatable way. Real-valued metric, the lower the better.

e Linear quadratic (LQ) cost function (derived from linear quadratic optimal
control theory) in the empirical case (see Equation . This is applicable
only when the sequence of commands is provided as output as well. This is a
real valued metric; the smaller the better.

e Percentage of hit obstacles wrt the total number of the ones faced. This might
also be split according to the different nature of obstacles: fixed, mobile, known
a priori, unknown, etc. This is a real-valued metric, the smaller the better.

e Having specified a minimal distance from obstacles, compute the number of
times the robot is closer than a threshold to obstacles during the path or the

© 2014 by RoCKIn Team 32 Revision 1.0

Chapter 4. Functionality Benchmarks 4.1. Scoring framework for functionality benchmarks

expected value of such distance. This metric is related to robot safety, the
smaller the better in case of number of times closer, the higher the better in
the case of expected value of the distance.

4.1.9 Functionality benchmark: grasp planning

Description: Determine the grasping approach and grasping position according to the
object to be grasped and the robot gripper. By grasping we intend the constrain of
one or more degrees of freedom for the grasped object. In some cases the grasping
force should be controlled when dealing with soft, fragile, or non-rigid objects}

Input/Output: The robot is provided with a model of the object to be grasped and
(optionally) a task for which the grasping is required (e.g., pouring a bottle vs.
handling a bottle vs. stacking a bottle on a pile). The robot is assumed to know
the kinematic and (optionally) the dynamics of the gripper and it has to plan the
grasping approach position and (optionally) the grasping force so to limit the target
degrees of freedom of the object and thus execute the desired task.

Benchmarking data: The data required to evaluate grasp planning are the grasping
approach and the graps position with respect to the object as produced by the
planning algorithm. Also the time required to produce the grasp plan is required to
evaluate the effectiveness of the algorithm under evaluation.

Metrics: Different metrics could be defined for grasp planning. One of the most deli-
cate aspects, in evaluation grasp planning, is to evaluate a grasping solution in a
completely independent way with respect to its actual execution. In the following
we provide some metrics which aim at evaluation the outcome of this functionality
independently from the actual execution of its result.

e Planning success, i.e., the fact that the planning algorithm has achieved its
goal in terms of limiting the prescribed degrees of freedom taking into account
the task for which these degrees of freedom are required to be constrained.
This is a boolean score, true is better.

e Time required to generate the grasping plan; this is a real-valued metrics the
lower the better.

4.1.10 Functionality benchmark: visual servoing

Description: Visual servoing functionality, also known as Vision-Based Robot Control,
uses feedback information extracted from a vision sensor to control the motion of
a robot. Although it might be implemented as a combination of other basic func-
tionalities, e.g., object localization + arm path planning + arm path execution, it
might be occur also as a monolithic functionality, i.e., Image Based Visual Servoing,
for which novel metrics need to be devised™]

4Here we focus in the planning of the grasp and we do not specify a functional benchmark for the
grasping execution which could be eventually re-casted in terms of control problem with (optionally) force
feedback. In this case classical metrics for control system evaluation could be applied, e.g., repeatability,
accuracy, bandwidth of the control loop, disturbance rejection, etc.

I5This is the rationale of having this functionality benchmark and not just referring to the combination
of existing ones.

Revision 1.0 33 © 2014 by RoCKIn Team

4.1. Scoring framework for functionality benchmarks Chapter 4. Functionality Benchmarks

Input/Output: The robot, or its end effector, is required to reach a given pose; as input,
beside normal proprioceptive perception, it has a sequence of frames captured by a
camera which is fixed to the moving body and observes the scene. A set of features
from the first image need to reach a specified position in the image which refer to
the target pose.

Benchmarking data: The sequence of poses reached by the robot or by its end effector
from the initial configuration to the final configuration; the sequence of images
acquired and processed by the robot during its motion; the sequences of positions
in the acquired frames of the features for which an initial and a goal configuration
have been defined.

Metrics: Depending on the aspect to be evaluated some metrics can be defined:

e Absolute position accuracy and repeatibility in reaching the target pose/configuration
with respect to a predefined 3D reference frame; this is a real-valued metrics,
the higher the better.

e Absolute position accuracy and repeatibility in reaching the target pose/configuration
in terms of positions of image feature, thus with respect to the origin of the
image frame; this is a real-valued metrics, the higher the better.

e time required to perform the control loop including the time required to per-
form image processing; this is a real valued metrics, the lower the better.

4.1.11 Functionality benchmark: input from humans through speech

Description: The robot should recognize a command issued by a person (or played from
a file) through a sound reproduction system, by interpreting the audio signal coming
from a loudspeaker to its own audio sensors. A version of the benchmark testing
only the interpretation process and not the input audio system can use audio files
instead of actual input from on-board microphone(s)

Input/Output: A priori, robots are provided with: the lexicon used in the benchmark
(full list of verbs and nouns of objects used in the spoken sentences to be recognized),
sample audio files, a knowledge base (Frame Knowledge Base, FKB) containing a
set of semantic frames as described in the rulebook. In the reduced version of the
benchmark, audio files with commands to be interpreted are provided as input. In
the complete version, commands are provided in natural language as voice sound
produced by a sound reproduction system. The output is the CFR (Command
Frame Representation - as described in the rulebook) for each command that has
been provided.

Benchmarking data: data acuired for benchmarking are:

e sensor data (in the form of audio files) used by the robot to perform speech
recognitionm;

16Speech files from all teams and all benchmarks (both Task benchmarks and Functional benchmarks)
will be collected and used to build a public dataset. The audio files in the dataset will therefore include
all the defects of real-world audio capture using robot hardware (e.g., electrical and mechanical noise,
limited bandwidth, harmonic distortion). Such files will be usable to test speech recognition software, or
(possibly) to act as input during the execution of speech recognition benchmarks.

© 2014 by RoCKIn Team 34 Revision 1.0

Chapter 4. Functionality Benchmarks 4.2. Combining task and functionality rankings

e the set of all possible transcriptions, in the appropriate natural language, for
each user utterance;

e the final command produced during the natural language analysis process;

e intermediate information produced or used by the natural language under-
standing system during the analysis as, for example, syntactic information.

Metrics: Different aspects of the speech understanding process can be assessed:

1. The Word Error Rate on the transcription of the user utterances, in order to
evaluate the performance of the speech recognition process.

2. For the generated CFR, the performance of the system will be evaluated against
the provided gold standard version of the CFR, that is conveniently paired with
the analyzed audio file and transcription. Two different performances will be
evaluated at this step. One measuring the ability of the system in recognizing
the main action, called Action Classification (AcC), and one related to the
classification of the action arguments, called Argument Classification (AgC).
In both cases the evaluations will be carried out in term of Precision, Recall and
F-Measure. This process is inspired to the Semantic Role Labeling evaluation
scheme proposed in [5]. For the AcC' this measures will be defined as follow:

e Precision: the percentage of correctly tagged frames among all the frames
tagged by the system:;

e Recall: the percentage of correctly tagged frames with respect to all the
gold standard frames;

e [-Measure: the harmonic mean between Precision and Recall.

Similarly, for the AgC, Precision, Recall and F-Measure will be evaluated, given
an action f, as:

e Precision: the percentage of correctly tagged arguments of f with respect
to all the arguments tagged by the system for f.

e Recall: the percentage of correctly tagged arguments of f with respect to
all the gold standard arguments for f.

e [-Measure: the harmonic mean between Precision and Recall.

3. Time utilized (if less than the maximum allowed for the benchmark).

4.2 Combining task and functionality rankings

The availability of both task and functionality rankings opens the way for the quantitative
analysis of the importance of single functionalities in performing complex tasks. This is
an innovative aspect triggered by the RoCKIn approach to competitions. While a full
evaluation of the practical viability of the approach is deferred after the first 2014 RoCKlIn
Competitions, this section provides some details about the quantitative analysis of the
importance of functionalities in performing tasks which is under consideration.

To state the importance of a functionality in performing a given task, RoCKIn will
borrow the concept of Shapley value from Game theory. Let assume a coalition of play-
ers (Functionalities in the RoCKlIn context) cooperates, and obtains a certain overall
gain from that cooperation (the Task Benchmark scoring in the RoCKIn context). Since

Revision 1.0 35 © 2014 by RoCKIn Team

4.2. Combining task and functionality rankings Chapter 4. Functionality Benchmarks

Table 4.1: An example of task and functionality scores for a team

Benchmark Score
F1 10
F2 5
F3 1
T1 ={F1F2} | 10
{F1,F3} 11
T2 ={F2,F3} 15
T3 ={F1,F2,F3} | 20

some players may contribute more to the coalition than others or may possess different
bargaining power (for example threatening to destroy the whole surplus), what final dis-
tribution of generated surplus among the players should arise in any particular game? Or
phrased differently: how important is each player to the overall cooperation, and what
payoff can he or she reasonably expect? Or in the RoCKlIn jargon: how important is each
Functionality to the reach a given performance in a Task Benchmark?

The Shapley value, named in honour of Lloyd Shapley who introduced it in 1953 [§],
provides one possible answer to the aforementioned question by assigning, to each cooper-
ative game, a unique distribution (among the players) of a total surplus generated by the
coalition of all players. Re-phrased in RoCKlIn jargon, the Shapley value could be used to
assign, to each Task Benchmark, a unique distribution (among involved Functionalities)
of the task score.

To clarify how Shapley values will be considered in RoCKlIn to distribute task scoring
among the involved functionalities, we consider the following example. Let three rankings
relative to three tasks that involve three functionalities, which have been independently
evaluated'’} Task T1 involves functionalities F1 and F2, task T2 involves functionali-
ties F2 and F3, while task T3 involve all three functionalities F1, F2, F3. Considering
a single team, assume that its scores in the three Task Benchmarks are: score(T1)=10,
score(T2)=15, score(T3)=20. The scores of the same team according to functionalities
are score(F1)=10, score(F2)=5, score(F3)=1. The situation is depicted in Table[d.1 Note
that a score for the combination of functions {F1,F3} is missing (no task involving only
these two functionalities has been directly evaluated) and so the sum of the individual
scores of F1 and F3 is used for scoring the combination {Fl,F3}|T_g} Assuming that all
scores are expressed according to the same scale, the Shapley values of the single func-
tionalities can be calculated as:

60 = =2 S I(Cali) U {i}) = u(Cr (i)

where ¢ is a functionality, n is the total number of functionalities, 7 is a permutation of
the n Functionality Benchmark scores, C,(7) is the set of functionalities that precede i is
the permutation 7, and v() is the score of the set of functionalities specified as argument.

"Tn the following for the sake of easiness we will consider all the score to be integer values; the approach,
when used to evaluate RoCKlIn teams, will take into account the different metrics and scoring we have
designed for the competition.

18 Alternatives are possible, like calculating approximate Shapley values.

© 2014 by RoCKIn Team 36 Revision 1.0

Chapter 4. Functionality Benchmarks 4.2. Combining task and functionality rankings

In the above example,

b1 = 57 S (CA(F1) U {F1}) = v(C (i)

mell

having defined

I = {{F1,F2 F3},{F1,F3, F2} {F2 F1,F3}, .
{F2,F3,F1},{F3,F1,F2},{F3,F2,F1}}. (4.3)

This turns into

br1 = %[v({Fl}) —o({}) +v({F1}) —v({}) + v({F1, F2}) — v({F2})
o({F1, F2, F3}) — v({F2, F3}) + v({F1, F3}) — v({F3})
+o({F1, F2, F3}) — v({F2, F3})]

1
gzﬁFl:5[10—0—1—10—0—1—10—54—20—15+11—1+20—15]

1 15
Similarly, ¢ppy = % =T7and ¢p3 = %, showing that functionality F'1 has a larger impact
on the performance of the considered tasks.

We remark here that the use of Shapley values in RoCKIn is proposed as a post-
competition analysis tool, for the time being it has not been validated on the field, and it
will be used experimentally in RoCKIn 2014 for the first time. Other techniques, like the
Banzhaf power index [2] or the Shapley-Shubik power index [7], could be used to perform
the same kind of analysis and quantitatively evaluate the role of functionalities in tasks.
After the validation of the Shapley value, in case we will devise the need for that, we will
consider such alternatives too.

Revision 1.0 37 © 2014 by RoCKIn Team

4.2. Combining task and functionality rankings Chapter 4. Functionality Benchmarks

© 2014 by RoCKIn Team 38 Revision 1.0

Bibliography

[1] M. Anderson, O. Jenkins, and S. Osentoski. Recasting robotics challenges as exper-
iments. IEEE Robotics Automation Magazine, 18(2):10-11, 2011.

[2] John F. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers
Law Review, 19(2):317-343, 1965.

[3] W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kummerle, C. Dornhege,
M. Ruhnke, A. Kleiner, and J.D. Tardos. A comparison of slam algorithms based on
a graph of relations. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, pages 2089-2095, Oct 20009.

[4] R. Cohn, A.G.and Dechter and G. Lakemeyer. The competition section: a new paper
category. Artificial Intelligence, 175:iii, 2011.

[5] Danilo Croce, Giuseppe Castellucci, and Emanuele Bastianelli. Structured learning
for semantic role labeling. Intelligenza Artificiale, 6(2):163-176, 2012.

[6] D. Holz, L. Iocchi, and T. van der Zant. Benchmarking intelligent service robots
through scientific competitions: The RoboCup@Home approach. In Proc. AAAI
Spring Symposium on Designing Intelligent Robots: Reintegrating Al II, pages 27—
32, 2013.

[7] M. Shubik L.S. Shapley. A method for evaluating the distribution of power in a
committee system. American Political Science Review, 48:787-792, 1954.

[8] Lloyd S. Shapley. A value for n-person games. In H'W. Kuhn and A.W. Tucker,
editors, Contributions to the Theory of Games, Volume II, volume 28 of Annals of
Mathematical Studies, pages 307-317. Princeton University Press, 1953.

[9] B. Smart. Competitions, challenges, or journal papers. IEEE Robotics Automation
Magazine, 19(1):14, 2012.

[10] M. Tedre and N. Moisseinen. Experiments in computing: A survey. The Scientific
World Journal, Volume 2014:1-11, 2014.

39

	Benchmarking Through Competitions
	Robot competitions as benchmarking tools
	Difficulties, limitations, and perspectives
	The RoCKIn benchmarking competitions

	Benchmarking Modules and Systems
	Rationale and benefits
	Matrix representation of functionality and task benchmarks
	Benchmarks of the 2014 RoCKIn competitions
	Scoring framework for modules and systems

	Task Benchmarks
	Scoring framework for task benchmarks
	An example of task benchmark scoring
	Combining task rankings

	Functionality Benchmarks
	Scoring framework for functionality benchmarks
	Functionality benchmark: task planning
	Functionality benchmark: 2D geometric mapping
	Functionality benchmark: 2D self-localization
	Functionality benchmark: robot path planning
	Functionality benchmark: robot path following
	Functionality benchmark: object/face detection, recognition, and localization
	Functionality benchmark: arm path planning
	Functionality benchmark: arm path following
	Functionality benchmark: grasp planning
	Functionality benchmark: visual servoing
	Functionality benchmark: input from humans through speech

	Combining task and functionality rankings

